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ABSTRACT

During 2001-2004, research was performed to develop test data on the embrittlement of niobium-bearing 
(Zr-1%Nb) cladding of the VVER type under loss-of-coolant accident (LOCA) conditions.  Procedures were 
developed and validated to determine the zero ductility threshold. Pre-test and post-test examinations in-
cluded weight gain and hydrogen content measurements, preparation of metallographic samples, and exami-
nation of samples using optical microscopy, scanning electron microscopy and transmission electron micros-
copy.  Sensitivity of the zero ductility threshold to heating and cooling rates was determined.  Oxidation 
kinetics and ductility threshold were measured for the standard E110 alloy, six variants with different impuri-
ties, Zircaloy, and irradiated E110.  Oxidation temperatures were varied from 800-1200 C, and mechanical 
(ring compression) testing temperatures were varied from 20-300 C.  It was concluded that (a) the current 
type of E110 cladding has an optimal microstructure, (b) oxidation and ductility of the oxidized cladding are 
very sensitive to microchemical composition and surface finish, (c) the use of sponge zirconium for fabrica-
tion of cladding tubes provides a significant reduction of the oxidation rate and an increase in the zero ductil-
ity threshold, and (d) additional improvement in oxidation and ductility can be achieved by polishing the 
cladding surface. 





v

FOREWORD

A world-wide trend to substantially increase nuclear fuel burnup to higher levels has led fuel manufacturers 
in the U.S. and France to develop niobium-bearing cladding alloys that are similar in composition to Russian 
cladding alloys.  These alloys, E-110, E-635, ZIRLO, and M5, all have greatly improved corrosion resistance 
compared with Zircaloy during normal operation, especially at higher burnup levels.  However, in early 
2001, it was realized that the Russian alloys and the Western niobium-bearing alloys behaved somewhat 
differently under conditions of a loss-of-coolant accident (LOCA), during which the cladding is exposed to 
steam at high temperatures. 

At that time, a research program was already underway at Argonne National Laboratory in the U.S. to inves-
tigate the effects of high-burnup on cladding behavior under LOCA conditions.  Further, a cooperative re-
search effort on fuel behavior was also underway at the Russian Research Center (Kurchatov Institute) with 
partial sponsorship by the French Institute for Radiological Protection and Nuclear Safety and the U.S. Nu-
clear Regulatory Commission; additional funding was being provided by the Russian fuel vendor, TVEL.  It 
was then decided to investigate the underlying phenomena that governed cladding behavior of niobium-
bearing alloys — particularly the Russian cladding — in this Russian program.  By closely coordinating this 
research with the work underway at Argonne National Laboratory on similar Western alloys, it was hoped 
that a fuller understanding could be obtained.  Coordination between laboratories was further enhanced by 
including some Zircaloy cladding specimens in the Russian program and including some E110 cladding 
specimens in the program at Argonne National Laboratory. 

After several years of research at both laboratories, the general cause of differences in behavior under LOCA 
conditions has been isolated to the ore reduction process and the surface finish of the cladding tubing.  This 
understanding is helping to improve licensing criteria that can be applied to new and different cladding al-
loys.  The extensive work performed by the Russian Research Center (Kurchatov Institute) and their collabo-
rating laboratory at the State Research Center (Research Institute of Atomic Reactors) is documented in the 
following report. 

Ralph O. Meyer     Carl J. Paperiello 

 Senior Technical Advisor    Director 

Office of Nuclear Regulatory Research   Office of Nuclear Regulatory Research  

U.S. Nuclear Regulatory Commission   U.S. Nuclear Regulatory Commission 
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1. INTRODUCTION

To study the oxidation behavior and embrittlement threshold of Zr-1%Nb cladding under loss-of-coolant 
accident (LOCA) conditions, a research program was developed and implemented by the Russian Research 
Center “Kurchatov Institute” (RRC KI) in cooperation with the Research Institute of Atomic Reactors 
(RIAR).  The program was performed during the period of 2001–2004 and sponsored by (a) Joint Stock 
Company “TVEL” (JSC “TVEL”, Russia), (b) U.S. Nuclear Regulatory Commission (U.S. NRC, USA), and 
(c) Institute for the Radiological Protection and Nuclear Safety (IRSN, France). 

The incentive to begin this work was directly related the increase of fuel burnup in light-water reactors 
(LWRs) to 60–70 MW d/kg U and higher.  Substantial corrosion is experienced with Zircaloy claddings at 
fuel burnup higher than 50 MW d/kg U, whereas much less corrosion occurs with Zr-1%Nb cladding during 
the commercial operation in the Russian type of pressurized-water reactors (VVERs) and with niobium-
bearing claddings manufactured from the M5 and Zirlo alloys after operations in the pressurized-water 
reactors (PWRs).  Experimental studies performed with the VVER type of Zr-1%Nb claddings refabricated 
from commercial fuel rods with burnup up to 60 MW d/kg U have shown that this cladding has a high safety 
margin under reactivity-initiated accident (RIA) conditions. But the preliminary consideration of safety 
aspects associated with niobium-bearing claddings under LOCA conditions raised the following issues: 

several investigations performed with Zr-1%Nb cladding of the VVER type in different countries in the 
1990s have shown that the niobium-bearing cladding has somewhat different oxidation and 
embrittlement behavior in comparison with the zircaloy cladding; 

the same general requirements concerning the prevention of the embrittled cladding fragmentation are 
applied in the LOCA safety analysis of the VVER and PWR reactors, but different approaches are used 
for this goal. 

Taking into account these and other issues, it was decided to perform a special research program including 
the following main parts of investigations: 

the reassessment of published data concerning the PWR and VVER cladding embrittlement under LOCA 
conditions;

the development and validation of test apparatus and test procedures; 

the performance of sensitivity studies and the determination of key factors which must be studied during 
this program; 

the performance of oxidation, mechanical tests and different pre-test and post-test examinations; 

the analysis and interpretation of obtained results. 

The major focus of investigations performed in the frame of this work was concentrated on the 
characterization of Zr-1%Nb (E110) oxidation and mechanical behavior as a function of such parameters as: 

oxidation conditions (single-sided or double-sided, heating and cooling rates, oxidation temperatures 
from 800–1200 C, and weight gain); 

mechanical test conditions (ring tensile tests, ring compression tests, three-point bending tests) and test 
temperature (20–300 C); 

cladding irradiation (as-received and refabricated claddings from the commercial fuel rods with the 
burnup about 50 MW d/kg U); 

cladding surface conditions (as-received tubes, as-received claddings, polished as-received tubes, ground 
as-received tubes); 

impurity compositions in the cladding. 

In addition to oxidation and mechanical tests with Zr-1%Nb (E110) cladding, several reference tests were 
performed with the Zircaloy-4 (zirconium-tin) and E635 (zirconium-niobium-tin) claddings.  The research 
program results are presented in this report. 
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2. BACKGROUND

The prevention of cladding fragmentation in LWR-type reactors under the LOCA conditions is one of the 
basic principles of the current safety philosophy. The reason for this is related to the following physical phe-
nomena: 

significant increase of the cladding temperature during the LOCA accident caused by the coolant 
blowdown and degradation of heat transfer; 

high temperature cladding steam oxidation accompanied by cladding embrittlement; 

possible fracture of the embrittled cladding caused by post-LOCA forces during quenching and post-
quenching actions. 

In accordance with the current world practice, the prevention of the cladding fragmentation under LOCA 
conditions is assured by special safety criteria. Thus, the main Russian regulatory document contains two 
special requirements concerning this problem: for the Zr-1%Nb (E110) cladding [1]: 

the peak cladding temperature (PCT) must not exceed 1200 C; 

the local oxidation depth (Equivalent Cladding Reacted layer, ECR) must not exceed 18% of the initial 
wall thickness. 

Similar criteria are contained in the regulatory documents of other countries for the zircaloy cladding 
(1200 C, 15–17% ECR). It should be noted that the concept for the use of fragmentation criteria of these 
types was developed by the NRC (USA) with respect to the zircaloy claddings [2]. The motivation for the 
choice of this approach for the safety fragmentation criteria was reconstructed in the recent paper prepared 
by H.Chung and G.Hache [3]. 

The first research to determine the zero ductility threshold of oxidized Zry-4 claddings after the quench 
cooling was performed by D.O. Hobson at the beginning of 1970s [4, 5]. In accordance with results of a slow 
compression of Zry-4 oxidized samples, he revealed the relationship between the critical relative thickness of 
the prior -phase and zero ductility threshold at 135 C (the saturation temperature during the reflood stage). 
This relationship was used to develop the following embrittlement criterion [6]: 

44.0
o

T

W
,

where T – the thickness of the oxygen-rich cladding layers (ZrO2 and -ZrO);

Wo – the initial thickness of the unoxidized cladding. 

Further, it was revealed that the cladding ductility margin at low temperatures (150 C or less) was a function 
of not only the prior -phase thickness but also of the oxygen concentration in this layer. The appropriate 
analysis of Hobson’s test has shown that: 

the maximum oxygen concentration in the prior -phase is a function of the oxygen solubility in the 
-phase under high temperature oxidation conditions; 

the zero ductility threshold (at 20 - 150 C) is associated with 0.7% (by weight) oxygen concentration in 
the prior -phase. This critical oxygen concentration is achieved very fast if the oxidation temperature is 
higher than 1204 C (2200 F). 

Taking into account these test results, the embrittlement criterion was added with the Peak Cladding Tem-
perature (PCT) criterion. The PCT criterion was estimated as 1204 C [6]. 

The final evolution of these criteria involved the following: 

the extension of the test data base needed to validate criteria [7, 8, 9]; 

the introduction of the reasonable conservative principle into the safety analysis procedure. 

As for the conservatism, it was decided to organize the results of different tests into the unified system using 
the Baker–Just equation allowing to calculate the Zry-4 high temperature kinetics with the conservative mar-
gin [10]. This equation was used to determine the oxygen weight uptake with each tested sample. Besides, to 
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improve the physical interpretation of calculated results, the concept of the Equivalent Cladding Reacted 
(ECR) layer was introduced: 

o

eECR ,

where l – oxidation equivalent layer determined using the following condition: the all uptaken oxy-
gen are used for the formation of the stoichiometric zirconium dioxide (ZrO2);

o – the initial cladding thickness. 

The practical implementation of this approach allowed the development of a test data base with the following 
list of test parameters: 

ECR calculated with the Baker–Just; 

oxidation time and temperature; 

tested cladding sample characterization: intact, failed. 

The analysis of this data base presented in Reference 3 shows that: 

at an oxidation temperature less than 1204 C, the brittle fracture of oxidized claddings was not observed 
under ring compression test conditions (at 135 C and higher) if the ECR calculated with the Baker–Just 
correlation was less than 17%; 

at an oxidation temperature less than 1600 C, the brittle fracture of oxidation claddings was not observed 
under thermal-shock during direct quenching conditions if the ECR calculated with the Baker–Just 
correlation was less than 19%. 

Thus, the results of two different types of tests (the comparison of mechanical tests and thermal–shock tests) 
demonstrated the similarity in the evaluation of the critical oxidized thickness (17–19% ECR) although there 
was a significant discrepancy in the estimation of the permissible peak cladding temperature. These results 
led the experts responsible for the development of the proposal on safety criteria to the formulation of their 
position concerning the choice of the permissible peak temperature [11]. This position may be characterized 
by the following general provisions: 

the practical application of thermal–shock test results requires such a detailed knowledge of physical 
processes during the LOCA which cannot be provided; 

to prevent the fragmentation, the oxidized cladding must retain some margin of ductility; 

the choice of 1204 C (2200 F) PCT limit based on results of compression mechanical tests provides the 
conservative margin in comparison with the thermal–shock test results. 

In 1973, this position was used to formulate the NRC criteria [2]: 1204 C, 17% ECR (calculated using the 
Baker–Just equation). During the period of 1974–1990, experimental investigations with zircaloy claddings 
were continued to understand the sensitivity of fragmentation threshold to such factors as: 

the cladding ballooning and burst; 

the mechanical interaction of the oxidized cladding in the fuel bundle caused by ballooning and bending; 

the axial mechanical constraint of ballooned cladding by the grid spacers. 

A brief description of this cycle of Zry-4 investigations is presented in Table 2.1. The main outcomes of 
these investigations may be characterized in the following way: 

1. The thermal–shock tests performed with the original geometry of the oxidized cladding (without axial 
constraint or ballooning and burst) or with the original geometry of fuel rod simulators have shown that 
the current safety criteria (1204 C, 17% ECR) have a margin of about 100% in ECR. The margin in PCT 
does not exceed 150 C. 

2. Thermal–shock studies performed to check the constraining effect of the grids when using deformed 
cladding (ballooning and burst) have shown that the fragmentation threshold decreased significantly with 
axial constraint, but the test fragmentation threshold did not exceed the safety criteria. 
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3. Special impact tests performed with the simulation of potential impact fracture energy (estimated as 
0.3 J) have shown that: 

the oxidized cladding with the original geometry had a high margin before fracture; 

the fragmentation threshold of the deformed cladding (after ballooning and burst) was in agreement with 
the safety criteria. Some claddings were fragmented at values lower than 17% (safety criterion), and the 
increase in hydrogen content in local parts of the oxidized claddings (local cladding hydriding) was the 
cause of this effect, but the peak cladding temperature was higher than 1204 C (safety criterion). 

4. Additional studies of the hydriding effect performed with compression tests demonstrated that the zero 
ductility threshold of hydrided cladding corresponded to 700 ppm of hydrogen in the prior -phase.

5. The axial tensile and ring compression tests confirmed that the zero ductility threshold was reached when 
the average oxygen concentration in the prior -phase increased from 0.6% by weight up to 0.8% by 
weight.

Taking into account results of all these tests and understanding of the fact that the ductility margin of the 
oxidized cladding is a function of oxygen and hydrogen concentration in the prior  phase, several investiga-
tors proposed to change the current safety criteria (1204 C, 17% ECR) into criteria based on the oxygen and 
hydrogen concentrations in the oxidized claddings. But these suggestions were not apparently implemented 
due to the fact that: 

the introduction of these criteria must be accompanied by the use of computer codes for the safety 
analysis which are able to calculate the appropriate parameters with the required accuracy; 

numerous additional experimental programs would be needed to develop and validate the integral 
criterion based on the oxygen and hydrogen content in the prior -phase of the oxidized cladding. 

In accordance with these considerations, improvement of the safety criteria was postponed for the time being. 

Table 2.1. The list of major investigations performed during 1974–1990 to study the fragmentation 

threshold of unirradiated Zircaloy claddings 

Test type Test characterization Test results 

1. Thermal shock tests per-
formed by H.Chung and 
T.Kassner, USA, 1980 
[12] 

The double-sided oxidation of Zry-4 clad-
dings at 1000–1500 C with slow cooling 
though phase transition followed by 
quench type cooling 

The cladding fragmentation threshold 
was 28% ECR (measured) at 1500 C 
and 33% ECR at 1200 C 

The cladding fragmentation was not 
noted in this temperature range at 17% 
ECR (as-calculated using Baker-Just 
correlation) 

2. Thermal shock tests per-
formed by H.Uetsuka et. 
al., Japan, 1983 [13] 

The double-sided oxidation of Zry-4 clad-
dings at 950–1350 C with the quench 
cooling The cladding fragmentation threshold 

was higher than 35% ECR (as-
calculated using Baker-Just correlation) 
at 1200 C 
The cladding fragmentation was not 
observed in this temperature range at 
17% ECR (as-calculated using Baker-
Just correlation) 

3. Thermal shock tests with 
the cladding axial me-
chanical constrain per-
formed by H.Uetsuka et. 
al., Japan, 1983 [13] 

The double-sided oxidation of Zry-4 clad-
ding with the strong fixation of one clad-
ding end at 900–1300 C. The fixation of 
the second cladding end at the beginning 
of the quench cooling 

The cladding fragmentation threshold 
was 20% ECR (as-calculated using 
Baker-Just correlation) at 1200 C 
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Test type Test characterization Test results 
The cladding fragmentation of one fuel 
rod occurred at the following parame-
ters:

16% ECR 
1330 C 

4. The in-pile tests 
(PHEBUS research reac-
tor) of the tests fuel bun-
dle performed by 
M.Reocreux and E. Scott 
de Martinville, France, 
1990 [14] 

The LOCA-type test (#219) without the 
quench mode with Zry-4 claddings: the 
cladding ballooning and burst at high 
temperature, the cladding oxidation The reason of the fragmentation was 

assessed as the mechanical constrain of 
the temperature-induced cladding re-
placement 

5. Impact tests of oxidized 
claddings of original ge-
ometry performed by 
H.Chung and T.Kassner, 
USA, 1980 [12] 

The double-sided oxidation of Zry-4 clad-
dings at 1100–1400 C and the cooling rate 
5 C/s. The impact tests of oxidized clad-
dings 

The failure impact energy was higher 
than 0.8 J* [15], if the oxidation tem-
perature did not exceed 1315 C and the 
ECR did not exceed 17% (as-measured 
using the metallographic method) 
A good correlation between the cladding 
fragmentation threshold and 17% ECR 
(as-measured with the use of metal-
lographic method), 1204 C was ob-
served for the most tested fuel rods.  
A special analysis has shown that: 

6. Impact tests of deformed 
(after the ballooning and 
burst) and oxidized clad-
dings performed by 
H.Chung and T.Kassner, 
USA, 1980 [12] 

Fuel rods with the Zry-4 cladding and fuel 
pellet simulators were pressurized at the 
high temperature up to the ballooning and 
burst. After that, fuel rods were oxidized 
(under isothermal conditions) and 
quenched. The impact tests of these fuel 
rods were performed at the fixed impact 
energy 0.3 J 

some parts of the inner surface of 
deformed claddings are character-
ized by the formation of a thick 
spalled oxide 
it is revealed that stagnant steam/ 
water conditions are responsible for 
the initiation of the breakaway oxi-
dation on these parts of the cladding 
the high hydrogen uptake up to 
2200 ppm was noted in these spe-
cific zones 
it is observed that the cladding 
fragmentation threshold sharply de-
creases at the cladding hydrogen 
content 700 ppm and higher 

7. The compression tests of 
oxidized and hydrating 
claddings performed by 
H.Chung and T.Kassner, 
USA, 1980 [12] 

The mechanical compression tests were 
performed with fuel rods (Zry-4 cladding, 
fuel pellet simulators) after the pressuriza-
tion of the fuel cladding up to the burst 
and high temperature oxidation 

These scoping tests have shown that the 
residual ductility of the oxidized clad-
ding is a strong function of oxygen and 
hydrogen content in the prior -phase

A strong correlation between the hydro-
gen content in the prior -phase and 
cladding residual ductility was devel-
oped

8. The ring compression tests 
of deformed and oxidized 
claddings performed by 
H.Uetsuka et. al., Japan 
1981–1982 [16, 17] 

Zry-4 claddings were heated, pressurized 
up to the burst, oxidized and quenched. 
The compression tests were performed at 
100 C with ring samples which were cut 
off from oxidized claddings 

It was shown that the cladding was fully 
embrittled at 700 ppm of hydrogen con-
tent 

                                                     
* The expert estimations of possible loads in the commercial fuel bundle during late stages of LOCA have shown that 
the impact energy may achieve 0.3 J 
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Test type Test characterization Test results 
It was revealed that the oxygen in the 
prior -phase was distributed nonuni-
formely 
It was shown that the oxidized cladding 
had some ductility margin if the average 
oxygen content in the prior -phase did 
not exceed 0.6% by weight 

9. The tensile mechanical 
tests of the oxidized per-
formed by A.Sawatzky, 
UK, 1978 [18] 

The Zircaloy claddings were oxidized in 
the water steam at 1000–1600 c. After 
that, the tensile tests were performed at 
room temperature. the test data base was 
added with the microhardness measure-
ments across the cladding thickness 

It was determined that the zero ductility 
threshold of the oxidized cladding corre-
sponded to 0.8% averaged oxygen con-
tent (the appropriate ECR was 16%) 
Several fuel rods which failed after the 
tests at the post-test manipulations had 
the following parameters: 

the fuel rod with the burst at 1100 C 
oxidized up to 12% ECR (as-
measured) at the equivalent tem-
perature 1262 C 
three fuel rods oxidized at equiva-
lent temperature 1300 C up to 5–
11% ECR (as-measured) 

10. The in-pile tests of fuel 
rods performed in the PBF 
research reactor, USA, 
1982 [19] 

The single pressurized fuel rods with the 
Zry-4 cladding were oxidized at the tem-
perature transient mode 

fuel rods oxidized at equivalent 
temperature up to 7–8% ECR (as 
measured) were not fragmented 

New attempts to resume this activity were made in the middle of 1990s in the context of the increase in fuel 
burnup up to 60 MW d/kg U and higher in the LWRs. An important aspect of this new stage of investigations 
was connected with the fact that zircaloy cladding has a tendency towards the breakaway oxidation and clad-
ding hydriding at the high burnup (55 MW d/kg U and higher) under normal operation conditions. These 
effects result in a decrease of cladding ductility and lead to questions concerning the mechanical behavior of 
these claddings under accident conditions. The importance of this problem was shown practically in the ex-
periments with the Zry-4 irradiated cladding under reactivity-initiated accident (RIA) conditions [20, 21, 22]. 

Taking into account the revealed problems, extended investigations were initiated to study the irradiation 
effects in zircaloy claddings under LOCA conditions [23, 24, 25, 26, 27]. The important direction of these 
investigations was connected with advanced cladding materials including the niobium-bearing alloys. In this 
context, it should be noted that a niobium-bearing alloy E110 (Zr-1%Nb) had been used as the VVER clad-
ding material for several decades. Moreover, special investigations performed in 1990s showed that this alloy 
demonstrated a very high corrosion resistance under normal operation conditions up to 60 MW d/kg U [28]. 

Further, special investigations devoted to measurements of mechanical properties of E110 irradiated clad-
dings under accident conditions [29, 30, 31, 32] and experimental studies of VVER high burnup fuel rods 
(50–60 MW d/kg U) under RIA conditions [30, 33, 34, 35] have demonstrated that fuel rods with the Zr-
1%Nb (E110) cladding have good prospects in respect to the increase of the fuel burnup in VVERs. But it is 
obvious that the final analysis of this situation cannot be made without the consideration of experimental 
results characterizing the ductility margin of E110 claddings after the high temperature oxidation and 
quenching under LOCA-relevant conditions. 

The official history of such investigations with the E110 alloy was initiated in Russia goes back to the begin-
ning of the 1980s. Previous investigations used for the development of the second design limit of fuel rod 
damage (1200 C, 18% ECR) in the first national regulatory document on LWR safety issues [36] were not 
described in the open publications. The outline of main Russian research programs performed during the 
1990s to develop an experimental data base characterizing the oxidation and mechanical behavior of the 
E110 cladding is presented in Table 2.2. 
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Table 2.2. Results of Russian investigations performed during 1980–2001 to study the oxidation and me-

chanical behavior of unirradiated Zr-1%Nb (E110) claddings 

Test type Test characterization Test results 
The test data base needed to develop the E110 
oxidation kinetics correlations was obtained 
The effect of ZrO2 spallation was revealed in the 
temperature range 900–1100 C on achieving the 
critical oxide thickness ( 25 m) 

1. High temperature 
oxidation tests 
performed in 
VNIINM* and VTE**

[37, 38, 39, 40] 

The double-sided oxidation of E110 
claddings at 700–1500 C under 
isothermal and transient conditions 

A significant change of the cladding geometrical 
sizes was revealed for some transient modes 
The zero ductility threshold was associated with 
the weight gain 450 mg/cm2 ( 6% as-measured 
ECR) at 20 C 

2. Ring tensile tests of 
oxidized claddings 
performed in 
VNIINM, 1990 [41] 

The double-sided oxidation of E110 
claddings at 1000–1200 C with the 
direct current heating and fast air 
cooling. Ring tensile tests of oxidized 
samples at 20–1000 C 

The reasonable margin of residual ductility in 
fully brittle samples was revealed at temperatures 
higher than 500 C 
The brittle fracture occurred at the weight gain 
higher than 600 mg/dm2 (7% ECR) 3. Impact tests of 

oxidized claddings 
performed in 
VNIINM, 1990 [41] 

The double-sided oxidation of E110 
claddings at 1000–1200 C with the 
direct current heating and cooling rate 
10–20 C/s. The impact tests of 
oxidized claddings at 20 C 

The relationship between the failure specific 
impact energy of the unoxidized sample and 
brittle oxidized sample (500 mg/dm2) was 
assessed as 100 J/cm3 and 5 J/cm2, respectively 
The following correlation was developed: 

T
m

10410
exp920 ,

where m–oxygen weight gain (mg/dm2)
–temperature (K) 

4. Development of the 
E110 conservative 
oxidation kinetics 
performed in 
VNIINM, 1990 [42, 
43] 

The test data base obtained due to 
investigations stated in item 1 was used 

–time (s) 
5. High temperature 

oxidation tests of 
deformed claddings 
performed in 
VNIINM and VTE, 
1990–91 [42, 43] 

The oxidation tests of pressurized (Ar) 
cladding samples at 700–850 C. The 
measurement of the cladding hoop 
strain in the ballooning area (the 
variation of the outer diameter relative 
increment was 0–85 % ( D/Do)

The systematic increase of the oxygen weight 
gain was observed as a function of D/Do

increase. The dependence of the weight gain on 
the cladding surface in the ballooning area was 
estimated 

6. Thermal shock tests 
of oxidized claddings 
performed in 
VNIINM and VTE, 
1990–91 [42, 43, 44] 

The double-sided oxidation of E110 
claddings at 800–1200 C and water 
quench cooling 

The fragmentation did not occur for all claddings 
with the ECR less than 18% (as-measured) 

Ring compression tests showed that: 
a sharp decrease of the E110 ductility 
occurred after the achievement of some 
criterial ECR 
this criterial ECR was a function of the 
oxidation temperature 
the worst studied temperature was 1000 C 
the best studied temperature was 800 C 

7. Ring compression 
tests performed in 
VNIINM and VTE, 
1990 [42, 43] 

The double-sided oxidation of E110 
and Zry-4 (French and SANDVIK 
zircaloy) claddings at 800–1200 C and 
water quench cooling. (Reference tests 
with slowly cooled samples). 
Reference tests with the air oxidation 
of E110 claddings. Ring compression 
tests of 30 mm oxidized claddings at 
20 C 

the range of the E110 zero ductility 
threshold may be estimated as 3–4% (as-
measured) 

                                                     
* All-Russian Research Institute of Inorganic Materials 
** All-Russian Heat Engineering Institute 
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Test type Test characterization Test results 
the Zry-4 oxidized cladding had the 
monotonic character of ductility reduction at 
the ECR increase. The zero ductility 
threshold of Zry-4 cladding was not higher 
than 15% ECR (as-measured) 

 The visual observations of oxidized samples 
allowed to reveal that: 

at ECRs close to the criterial value (3–4%) 
the white spalled oxide appeared on the 
E110 cladding surface 
Zry-4 oxidized samples were covered with 
the black bright oxide 

The comparative analysis of results of hydrogen 
content measurements showed that E110 
claddings unlike Zry-4 had the tendency towards 
the high hydrogen absorption at 1000–1100 C. 
Reference tests with air oxidation confirmed that 
the E110 residual ductility increased significantly 
in this case (without the cladding hydriding 
effect)

The comparative data characterizing the 
sensitivity threshold to the cooling rate showed 
that this effect was insignificant 
The metallographic studies of the E110 oxidized 
cladding allowed to note that: 

the following difference in the E110 and 
Zry-4 -Zr(O) phase morphology was 
revealed:
the -Zr(O) phase in the Zry-4 cladding 
consisted of equiaxed grains; 
the -Zr(O) phase in the E110 cladding 
consisted of thin plates 
taking into account the difference in the 
phase transition temperatures for E110 and 
Zry-4 alloys, the E110 -phase must dissolve 
more oxygen than the Zry-4 one to provide 
the -Zr(O) phase initiation condition. This 
effect led to the difference in the -Zr(O)
thickness in E110 and Zry-4 claddings 

The oxidation of unpressurized fuel 
rod simulators with the E110 cladding 
at 900–1200 C, after that water quen-
ching of oxidized simulators. Two 
types of simulators are used: 

Both types of VVER fuel rod simulators were not 
fragmented during and after thermal shock tests 
in the following range of test parameters: 

900–1200 C 

8. Thermal shock tests 
of VVER fuel rod 
simulators performed 
in VNIINM and 
RIAR*, 1998–2001 
[45, 46, 47, 48] with Al2O3 fuel pellets and radiant 

heating of the fuel rod 
as-calculated ECR (using the E110 conserva-
tive correlation) less or equal to 18% 

with UO2 fuel pellets and W-hea-
ters installed inside the fuel stack 

One end of the fuel rod was open for 
the steam penetration 

The different margin for the safety fragmentation 
threshold (18% ECR) was demonstrated as a 
function of the oxidation temperature and 
simulator type 

                                                     
* State Research Center “Research Institute of Atomic Reactors” 
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Test type Test characterization Test results 
9. Impact tests of 

oxidized VVER fuel 
rod simulators per-
formed in VNIINM, 
1998–2001 [45–48] 

The E110 oxidized cladding after 
investigations performed as stated in 
the item 8 were tested in accordance 
with the following requirements 

The reference tests with the unoxidized cladding 
shown that the impact-toughness fracture was of 
64–89 J/cm2

claddings removed from the first 
type of fuel rod simulators were 
used
the circamferel notch 1–1.5 mm 
deep and 0.5 mm wide was made 
on each 100 mm oxidized cladding 
the impact tests were performed at 
20 C 

Impact tests with the oxidized cladding 
demonstrated that: 

the impact-toughness fracture was reduced 
down to 2.5 J/cm2 at 5% ECR (as-calculated 
using the E110 conservative correlation) 
the impact-toughness fracture at 10–15% 
ECR (as-calculated) was about 1 J/cm2

the tough type of the cladding fracture was 
observed up to the 5% ECR 
the brittle fracture occurred at 7% ECR 

Test data in general confirmed the results of 
previous tests: 

10. Compression tests of 
E110 oxidized 
claddings performed 
in VNIINM, 1998–
2001 [45–48] 

The double-sided oxidation of E110 
claddings at 800–1200 C with water 
quenching. The compression tests of 
oxidized samples 30, 50 mm long at 
20–900 C 

the oxidation at 800 C was much better than 
the oxidation at 1000 C 

the relative displacement at failure was 4% 
at the following combinations of as-
calculated ECR and the oxidation 
temperature: 
800 C: 10% ECR 

The compression tests (at 20 C) of 
oxidized claddings (18% as-calculated 
ECR) taken from type two simulators 
tested in accordance with requirements 
given in the item 8 

1000 C: 5% ECR 
no new effects were revealed in the tests of 
claddings taken from the fuel rod simulators 

The following effects of the mechanical test 
temperature were noted: 

the ductility of E110 oxidized at 200 C 
occurred if the ECR was less than 5% 
at 18% ECR, the temperature effect in the 
range 20–500 C was insignificant 

It should be noted that intensive studies with the E110 irradiated cladding were started in the middle of 1990s 
in addition to the test program presented in Table 2.2. The first results of investigations performed with the 
E110 irradiated claddings refabricated from VVER high burnup fuel rods (50 MW d/kg U) under LOCA 
conditions are presented in References 46–48. 

The analysis of the whole scope of obtained results allowed to conclude that: 

1. Numerous thermal–shock tests performed with different E110 samples (unirradiated and irradiated oxi-
dized claddings and fuel rod simulators) showed that the E110 fragmentation threshold was higher than 
18% ECR (calculated with the VNIINM conservative correlation) in the temperature range 800–1200 C. 

2. The effect of breakaway oxidation accompanied by the hydrogen uptake was revealed in E110 claddings 
oxidized at temperatures higher than 800 C and relatively low ECRs. 

3. Mechanical tests (tensile, compression, impact) demonstrated that a sharp decrease in residual ductility 
of the E110 oxidized cladding occurred in the measured ECR* range 4–7%. 

                                                     
* The measured ECR should not be compared with the safety criterion (18%) because (as it was noted earlier) the calcu-
lated ECR was used for the safety and analysis. That ECR was calculated using the conservative oxidation kinetics. 
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During 1990s several research programs devoted to the high temperature oxidation behavior of the E110 
cladding were initiated in Germany, Hungary and the Czech Republic. Major findings of these test programs 
obtained by 2001 are presented in Table 2.3. 

Table 2.3. Major results of mechanical tests with the E110 unirradiated oxidized claddings performed in 

Germany, Hungary and Czech Republic during 1990–2000 

Test type Test characterization Test results 
Results of mechanical tests showed that: 1. Ring compression 

tests performed by 
J.Böhmert in Germa-
ny (NC Rossendorf), 
1992 [49, 50] 

The double-sided oxidation of E110 
and Zry-4 (SANDVIK) in water steam 
at 800–1100 C with the water quench 
cooling. Ring compression tests at 
20 C 

the ductility of the E110 oxidized cladding 
(850–1100 C) decreased sharply down to the 
zero ductility threshold in 2(3)-4(5,6)% 
range of the as-measured ECR 
the ductility of E110 claddings oxidized at 
800 C was high up to the 8% ECR (the 
maximum value was achieved under this test 
conditions) 
the Zry-4 ductility decreased monotonically 
as a function of ECR, relative displacement 
at failure was 8% at 18.5% ECR (as-
measured) 

  The visual observations showed that: 
the white porous spalled oxide covered the 
E110 cladding sample at the relatively low 
ECRs
the black bright oxide covered the Zry 
samples 

The comparative measurements of hydrogen 
content in the oxidized claddings demonstrated 
that E110 had the tendency towards the high 
hydrogen absorption in contrast to the Zry-4 
cladding (especially at 1000 C). So, the 
maximum hydrogen content at the ECR of about 
18% (as-measured) was: 

2050 ppm in E110 
130 ppm in Zry-4 

The microhardness measurements allowed to 
reveal that the microhardness (oxygen 
concentration) in the prior -phase was 
significantly higher in the E110 cladding at the 
following test parameters: 

temperature oxidation: 900–1100 C 
oxidation time: 30 min 

2. Thermal shock tests 
performed in 
Hungary [51]  

The oxidation of 50 mm fuel rods 
simulators (E110 cladding, Al2O3

pellet) at 1000–1250 C with the water 
quench cooling 

The cladding fragmentation did not occur if the 
ECR (calculated using the VNIINM conservative 
correlation) was less than 30% 

Visual observations showed that: 
the black bright oxide covered the Zry-4 
samples in most cases 

3. Ring compression 
tests performed in 
Hungary [51, 52] 

The double-sided oxidation of E110 
and Zry-4 samples at 900–1200 C. 
Ring compression tests at 20 C 

the white spalled oxide covered E110 
samples at relatively low ECRs 

  The mechanical tests allowed to reveal that: 
the Zry-4 ductility decreased monotonically 
at the ECR increase 
the E110 ductility decreased sharply in the 
ECR range (as-measured) 1.6–5% 
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Test type Test characterization Test results 
The hydrogen content measurement showed that 
the Zry-4 hydrogen uptake was very low, the 
E110 hydrogen content achieved 600–800 ppm at 
the 5% ECR in the temperature range 900–
1100 C. The E110 hydrogen absorption rate was 
somewhat slowed down at 1200 C 

4. Thermal shock tests 
performed in Czech 
Republic [53, 54] 

The double-sided oxidation of 30 mm 
E110 cladding samples at 800–1200 C 
with the water quench cooling 

The E110 cladding fragmentation threshold was 
observed at ECRs higher than 30% (as-
measured) 
The visual observations showed that: 5. Ring compression 

tests performed in 
Czech Republic [53, 
54] 

The double-sided oxidation (argon and 
steam mixture) of 30 mm E110 
cladding samples at 800–1200 C with 
the water quench cooling. Ring 
compression tests at 20 C 

the E110 steam oxidation at temperatures 
higher than 800 C led to the formation of the 
light color oxide and flaking-off effect (but 
without nodular corrosion effects) 
the E110 heating in the argon atmosphere up 
to the isothermal oxidation temperature led 
to the formation of the black lustrous oxide 
on the E110 surface 

The ring compression tests and hydrogen content 
measurements allowed to reveal the following: 

the zero ductility threshold of the E110 
cladding was associated with 5% ECR (as-
measured) 
besides, the zero ductility condition was 
accompanied by the hydrogen content 500–
700 ppm in the prior -phase
the further ECR increase led to the oxide 
spallation and the increase of hydrogen 
content up to 2000 ppm 

The experimental data organized in Table 2.3 confirmed that: 

the tested E110 claddings had a tendency towards breakaway oxidation and the hydrogen uptake at tem-
peratures 850–1200 C; 

a sharp decrease in E110 ductility occurred at measured ECRs of 4–6%; 

fragmentation of E110 oxidized cladding was not observed at a calculated ECR less than 18% (1200 C) 
in accordance with the thermal–shock tests. 

Analysis of results of experimental investigations with the E110 cladding performed in Russia and abroad 
lead to the following observations: 

1. All investigations presented in Table 2.2 and Table 2.3 were performed with as-received E110 tubes 
manufactured during 1980s. But numerous improvements and changes were made during the 1990s 
in procedures for producing Zr ingots and fabricating E110 cladding. 

2. The first published results characterizing the oxidation and mechanical behavior of other Zr-1%Nb 
cladding (French M5 alloy) showed that earlier breakaway oxidation and high hydrogen uptake were 
not observed in these tests with niobium-bearing cladding [55]. 

3. Procedures of many oxidation tests (including the oxidation history, heating and cooling rates, tem-
perature and weight gain measurements, steam flow rate value, etc.) were not validated and docu-
mented along with the published data. The nature of cladding material used in investigations per-
formed outside of Russia was not documented also. Procedures of mechanical tests, parameters of 
cladding samples and processing of obtained results were quite different in some cases and often un-
known in other cases. 



2.11

4. Taking into account that niobium-bearing alloys are of a high priority with respect to the increase of 
LWR fuel burnup, an understanding of physical phenomena defining the mechanical behavior of 
these claddings under accident conditions is an important international research task. 

These considerations have led to the decision to perform the special research program concerning the ex-
perimental study of embrittlement of Zr-1%Nb (E110) cladding under LOCA–relevant conditions. 
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